Phosphorylation of the rat Ins(1,4,5)P₃ receptor at T930 within the coupling domain decreases its affinity to Ins(1,4,5)P₃

Channels (Austin). 2012 Sep-Oct;6(5):379-84. doi: 10.4161/chan.21170. Epub 2012 Aug 10.

Abstract

The Ins(1,4,5)P 3 receptor acts as a central hub for Ca ( 2+) signaling by integrating multiple signaling modalities into Ca ( 2+) release from intracellular stores downstream of G-protein and tyrosine kinase-coupled receptor stimulation. As such, the Ins(1,4,5)P 3 receptor plays fundamental roles in cellular physiology. The regulation of the Ins(1,4,5)P 3 receptor is complex and involves protein-protein interactions, post-translational modifications, allosteric modulation, and regulation of its sub-cellular distribution. Phosphorylation has been implicated in the sensitization of Ins(1,4,5)P 3-dependent Ca ( 2+) release observed during oocyte maturation. Here we investigate the role of phosphorylation at T-930, a residue phosphorylated specifically during meiosis. We show that a phosphomimetic mutation at T-930 of the rat Ins(1,4,5)P 3 receptor results in decreased Ins(1,4,5)P 3-dependent Ca ( 2+) release and lowers the Ins(1,4,5)P 3 binding affinity of the receptor. These data, coupled to the sensitization of Ins(1,4,5)P 3-dependent Ca ( 2+) release during meiosis, argue that phosphorylation within the coupling domain of the Ins(1,4,5)P 3 receptor acts in a combinatorial fashion to regulate Ins(1,4,5)P 3 receptor function.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Amino Acid Substitution
  • Animals
  • Calcium / metabolism
  • Cell Line
  • Chickens
  • Humans
  • Inositol 1,4,5-Trisphosphate / metabolism*
  • Inositol 1,4,5-Trisphosphate Receptors / genetics
  • Inositol 1,4,5-Trisphosphate Receptors / metabolism*
  • Meiosis
  • Molecular Sequence Data
  • Phosphorylation
  • Protein Binding
  • Rats
  • Threonine / metabolism
  • Xenopus / metabolism

Substances

  • Inositol 1,4,5-Trisphosphate Receptors
  • Threonine
  • Inositol 1,4,5-Trisphosphate
  • Calcium