Background: Experimental hemorrhagic shock (HS) is based on controlling bleeding and the treatment of fluid resuscitation to restore tissue oxygenation and perfusion. The HS could promote ischemia/reperfusion injury, which induces a general exacerbation of the inflammatory process, initially compromising the lungs. N-acetylcysteine (NAC), an antioxidant, may attenuate ischemia/reperfusion injury. This study evaluated the effect of NAC in association with fluid resuscitation on pulmonary injury in a controlled HS model in rats.
Methods: Male Wistar rats were submitted to controlled HS (mean arterial pressure of 35 mm Hg for 60 min). Two groups were constituted according to resuscitation solution administered: RLG (Ringer's lactate solution) and RLG+NAC (Ringer's lactate in association with 150 mg/kg NAC. A control group was submitted to catheterization only. After 120 min of resuscitation, bronchoalveolar lavage was performed to assess intra-alveolar cell infiltration and pulmonary tissue was collected for assessment of malondialdehyde, interleukin 6, and interleukin 10 and histopathology.
Results: Compared with the RLG group, the RLG+NAC group showed lower bronchoalveolar lavage inflammatory cell numbers, lower interstitial inflammatory infiltration in pulmonary parenchyma, and lower malondialdehyde concentration. However, tissue cytokine (interleukin 6 and interleukin 10) expression levels were similar.
Conclusion: N-acetylcysteine was associated with fluid resuscitation-attenuated oxidative stress and inflammatory cell infiltration in pulmonary parenchyma. N-acetylcysteine did not modify cytokine expression.
Copyright © 2013 Elsevier Inc. All rights reserved.