Recently, it has been proved that methylprednisolone has inhibition effect on the proliferation of endogenous neural progenitor cells (NPCs) after spinal cord injury (SCI). Similar effect has also been found on NPCs cultured in vitro. However, the mechanism remains to be fully delineated. The purpose of this study is to investigate the potential molecular mechanism of this effect in NPCs cultured in vitro by gene expression profiling. Fetal mouse brain-derived NPCs were divided into 2 groups: NPCs incubated with methylprednisolone as a model of the methylprednisolone treatment after SCI, and without methylprednisolone as the control group. After the cell quantitative analysis and CCK-8 assay, the microarray analysis was carried out. Genes differentially expressed between NPCs treated with and without methylprednisolone were extracted. It was observed that the expression of 143 genes, including many members of distinct families, such as hypoxia inducible factors and neurotransmitter receptors, were significantly changed in response to the methylprednisolone treatment. Our results provide global molecular insights into the mechanisms of methylprednisolone-induced proliferation inhibition effect and suggest that EdnrB may play an important role in this effect.
Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.