Next generation, foot-and-mouth disease (FMD) molecular vaccines based on replication deficient human adenovirus serotype 5 viral vectored delivery of FMD capsid genes (AdFMD) are being developed by the United States Dept. of Homeland Security and industry partners. The strategic goal of this program is to develop AdFMD licensed vaccines for the USA National Veterinary Stockpile for use, if needed, as emergency response tools during an FMD outbreak. This vaccine platform provides a unique opportunity to develop a set of in vitro analytical parameters to generate an AdFMD vaccine product profile to replace the current lot release test for traditional, inactivated FMD vaccines that requires FMDV challenge in livestock. The possibility of an indirect FMD vaccine potency test based on a serological alternative was initially investigated for a lead vaccine candidate, Adt.A24. Results show that serum virus neutralization (SVN) based serology testing for Adt.A24 vaccine lot release is not feasible, at least not in the context of vaccine potency assessment at one week post-vaccination. Thus, an in vitro infectious titer assay (tissue culture infectious dose 50, TCID50) which measures FMD infectious (protein expression) titer was established. Pre-validation results show acceptable assay variability and linearity and these data support further studies to validate the TCID50 assay as a potential potency release test. In addition, a quantitative physiochemical assay (HPLC) and three immunochemical assays (Fluorescent Focus-Forming Unit (FFU); tissue culture expression dose 50 (TCED50); Western blot) were developed for potential use as in vitro assays to monitor AdFMD vaccine lot-to-lot consistency and other potential applications. These results demonstrate the feasibility of using a traditional modified-live vaccine virus infectivity assay in combination with a set of physiochemical and immunochemical tests to build a vaccine product profile that will ensure the each AdFMD vaccine lot released is similar to a reference vaccine of proven clinical safety and efficacy.