Previous results showed that our in-house human skin equivalents (HSEs) differ in their stratum corneum (SC) lipid organization compared with human SC. To elucidate the cause of the altered SC lipid organization in the HSEs, a recently developed liquid chromatography/mass spectrometry method was used to study the free fatty acid (FFA) and ceramide composition in detail. In addition, the SC lipid composition of the HSEs and human skin was examined quantitatively with high-performance thin-layer chromatography. Our results reveal that all our HSEs have an increased presence of monounsaturated FFAs compared with human SC. Moreover, the HSEs display the presence of ceramide species with a monounsaturated acyl chain, which are not detected in human SC. All HSEs also exhibit an altered expression of stearoyl-CoA desaturase, the enzyme that converts saturated FFAs to monounsaturated FFAs. Furthermore, the HSEs show the presence of 12 ceramide subclasses, similar to native human SC. However, the HSEs have increased levels of ceramides EOS and EOH and ceramide species with short total carbon chains and a reduced FFA level compared with human SC. The presence of unsaturated lipid chains in HSE offers new opportunities to mimic the lipid properties of human SC more closely.