Background: We hypothesized that, for methicillin-resistant Staphylococcus aureus (MRSA), in vitro daptomycin susceptibility could be influenced by exposures to endogenous host defense peptides (HDPs) prior to clinical exposure to daptomycin.
Methods: Two endovascular HDPs were used: thrombin-induced platelet microbicidal protein (tPMP) and human neutrophil defensin-1 (hNP-1) from neutrophils. Forty-seven unique MRSA isolates obtained from bacteremic patients in multicenter prospective clinical trials were studied. Clinical characteristics, microbiologic parameters, prior vancomycin therapy, and susceptibilities to tPMP, hNP-1, and daptomycin were compared using univariate and multivariate analyses.
Results: All strains were daptomycin susceptible. Daptomycin minimum inhibitory concentrations (MICs) were inversely related to in vitro tPMP (but not hNP-1) killing. Strains with a daptomycin MIC of 1 mg/L exhibited significantly less killing by tPMP, compared with strains with an MIC of ≤ 0.5 mg/L. Prior vancomycin therapy did not influence this relationship. Regression tree modeling confirmed that reduced tPMP-induced killing in vitro was the strongest predictor of higher daptomycin MICs within the daptomycin-susceptible range.
Conclusions: Among daptomycin-susceptible MRSA isolates from patients who had never received daptomycin, higher daptomycin MICs tracked with increased resistance to killing by platelet-derived but not neutrophil-derived HDPs. These findings support the notion that endogenous exposure of MRSA to specific HDPs may play a role in selecting strains with an intrinsically higher daptomycin MIC phenotype.