The RV144 phase III clinical trial with the combination of the poxvirus vector ALVAC and the HIV gp120 protein has taught us that a vaccine against HIV/AIDS is possible but further improvements are still needed. Although the HIV protective effect of RV144 was modest (31.2%), these encouraging results reinforce the use of poxvirus vectors as HIV/AIDS vaccine candidates. In this review we focus on the prophylactic clinical studies thus far performed with the more widely studied poxvirus vectors, ALVAC, MVA, NYVAC and fowlpox expressing HIV antigens. We describe the characteristics of each vector administered either alone or in combination with other vectors, with emphasis on the immune parameters evaluated in healthy volunteers, percentage of responders and triggering of humoral and T cell responses. Some of these immunogens induced broad, polyfunctional and long-lasting CD4(+) and CD8(+) T cell responses to HIV-1 antigens in most volunteers, with preference for effector memory T cells, and neutralizing antibodies, immune parameters that might be relevant in protection. Finally, we consider improvements in immunogenicity of the poxvirus vectors by the selective deletion of viral immunomodulatory genes and insertion of host range genes in the poxvirus genome. Overall, the poxvirus vectors have proven to be excellent HIV/AIDS vaccine candidates, with distinct behavior among them, and the future implementation will be dictated by their optimized immune profile in clinical trials.