Spatially selective implementation of the adiabatic T2Prep sequence for magnetic resonance angiography of the coronary arteries

Magn Reson Med. 2013 Jul;70(1):97-105. doi: 10.1002/mrm.24437. Epub 2012 Aug 22.

Abstract

In coronary magnetic resonance angiography, a magnetization-preparation scheme for T2-weighting (T2Prep) is widely used to enhance contrast between the coronary blood-pool and the myocardium. This prepulse is commonly applied without spatial selection to minimize flow sensitivity, but the nonselective implementation results in a reduced magnetization of the in-flowing blood and a related penalty in signal-to-noise ratio. It is hypothesized that a spatially selective T2Prep would leave the magnetization of blood outside the T2Prep volume unaffected and thereby lower the signal-to-noise ratio penalty. To test this hypothesis, a spatially selective T2Prep was implemented where the user could freely adjust angulation and position of the T2Prep slab to avoid covering the ventricular blood-pool and saturating the in-flowing spins. A time gap of 150 ms was further added between the T2Prep and other prepulses to allow for in-flow of a larger volume of unsaturated spins. Consistent with numerical simulation, the spatially selective T2Prep increased in vivo human coronary artery signal-to-noise ratio (42.3 ± 2.9 vs. 31.4 ± 2.2, n = 22, P < 0.0001) and contrast-to-noise-ratio (18.6 ± 1.5 vs. 13.9 ± 1.2, P = 0.009) as compared to those of the nonselective T2Prep. Additionally, a segmental analysis demonstrated that the spatially selective T2Prep was most beneficial in proximal and mid segments where the in-flowing blood volume was largest compared to the distal segments.

Publication types

  • Research Support, American Recovery and Reinvestment Act
  • Research Support, N.I.H., Extramural

MeSH terms

  • Adult
  • Algorithms
  • Blood Flow Velocity / physiology
  • Coronary Angiography / methods*
  • Coronary Circulation / physiology*
  • Coronary Vessels / anatomy & histology*
  • Coronary Vessels / physiology*
  • Female
  • Humans
  • Image Enhancement / methods*
  • Image Interpretation, Computer-Assisted / methods*
  • Magnetic Resonance Angiography / methods*
  • Male
  • Reproducibility of Results
  • Sensitivity and Specificity