Validating serum S100B and neuron-specific enolase as biomarkers for the human brain - a combined serum, gene expression and MRI study

PLoS One. 2012;7(8):e43284. doi: 10.1371/journal.pone.0043284. Epub 2012 Aug 14.

Abstract

Introduction: Former studies have investigated the potential of serum biomarkers for diseases affecting the human brain. In particular the glial protein S100B, a neuro- and gliotrophin inducing plasticity, seems to be involved in the pathogenesis and treatment of psychiatric diseases such as major depression and schizophrenia. Neuron-specific enolase (NSE) is a specific serum marker for neuronal damage. However, the specificity of these biomarkers for cell type and brain region has not been investigated in vivo until now.

Methods: We acquired two magnetic resonance imaging parameters sensitive to changes in gray and white matter (T(1)-weighted/diffusion tensor imaging) and obtained serum S100B and NSE levels of 41 healthy subjects. Additionally, we analyzed whole brain gene expressions of S100B in another male cohort of three subjects using the Allen Brain Atlas. Furthermore, a female post mortal brain was investigated using double immunofluorescence labelling with oligodendrocyte markers.

Results: We show that S100B is specifically related to white matter structures, namely the corpus callosum, anterior forceps and superior longitudinal fasciculus in female subjects. This effect was observed in fractional anisotropy and radial diffusivity - the latest an indicator of myelin changes. Histological data confirmed a co-localization of S100B with oligodendrocyte markers in the human corpus callosum. S100B was most abundantly expressed in the corpus callosum according to the whole genome Allen Human Brain Atlas. In addition, NSE was related to gray matter structures, namely the amygdala. This effect was detected across sexes.

Conclusion: Our data demonstrates a very high S100B expression in white matter tracts, in particular in human corpus callosum. Our study is the first in vivo study validating the specificity of the glial marker S100B for the human brain, and supporting the assumption that radial diffusivity represents a myelin marker. Our results open a new perspective for future studies investigating major neuropsychiatric disorders.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Biomarkers / blood*
  • Brain / metabolism*
  • Cells, Cultured
  • Corpus Callosum / metabolism
  • Female
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Middle Aged
  • Nerve Growth Factors / blood*
  • Phosphopyruvate Hydratase / blood*
  • S100 Calcium Binding Protein beta Subunit
  • S100 Proteins / blood*
  • Young Adult

Substances

  • Biomarkers
  • Nerve Growth Factors
  • S100 Calcium Binding Protein beta Subunit
  • S100 Proteins
  • S100B protein, human
  • Phosphopyruvate Hydratase

Grants and funding

KA, JT, AV and MLS are supported by LIFE – Leipzig Research Center for Civilization Diseases at the University of Leipzig – funded by the European Union, European Regional Development Fund and by Free State of Saxony within the framework of the excellence initiative. MLS is supported by the German Consortium for Frontotemporal Lobar Degeneration, funded by the German Federal Ministry of Education and Research. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript and no additional external funding has been received for this study.