We demonstrate a semiconductor laser-based approach which enables plasmonic active devices in the telecom wavelength range. We show that optimized laser structures based on tensile-strained InGaAlAs quantum wells-coupled to integrated metallic patternings-enable surface plasmon generation in an electrically driven compact device. Experimental evidence of surface plasmon generation is obtained with the slit-doublet experiment in the near-field, using near-field scanning optical microscopy measurements.