Antagonistic regulation, yet synergistic defense: effect of bergapten and protease inhibitor on development of cowpea bruchid Callosobruchus maculatus

PLoS One. 2012;7(8):e41877. doi: 10.1371/journal.pone.0041877. Epub 2012 Aug 21.

Abstract

The furanocoumarin compound bergapten is a plant secondary metabolite that has anti-insect function. When incorporated into artificial diet, it retarded cowpea bruchid development, decreased fecundity, and caused mortality at a sufficient dose. cDNA microarray analysis indicated that cowpea bruchid altered expression of 543 midgut genes in response to dietary bergapten. Among these bergapten-regulated genes, 225 have known functions; for instance, those encoding proteins related to nutrient transport and metabolism, development, detoxification, defense and various cellular functions. Such differential gene regulation presumably facilitates the bruchids' countering the negative effect of dietary bergapten. Many genes did not have homology (E-value cutoff 10(-6)) with known genes in a BlastX search (206), or had homology only with genes of unknown function (112). Interestingly, when compared with the transcriptomic profile of cowpea bruchids treated with dietary soybean cysteine protease inhibitor N (scN), 195 out of 200 coregulated midgut genes are oppositely regulated by the two compounds. Simultaneous administration of bergapten and scN attenuated magnitude of change in selected oppositely-regulated genes, as well as led to synergistic delay in insect development. Therefore, targeting insect vulnerable sites that may compromise each other's counter-defensive response has the potential to increase the efficacy of the anti-insect molecules.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • 5-Methoxypsoralen
  • Adaptation, Physiological / drug effects
  • Animals
  • Coleoptera / drug effects*
  • Coleoptera / genetics
  • Coleoptera / growth & development*
  • Coleoptera / physiology
  • Cysteine Proteinase Inhibitors / pharmacology*
  • Drug Synergism
  • Female
  • Fertility / drug effects
  • Gene Expression Profiling
  • Male
  • Methoxsalen / analogs & derivatives*
  • Methoxsalen / pharmacology
  • Survival Analysis

Substances

  • Cysteine Proteinase Inhibitors
  • 5-Methoxypsoralen
  • Methoxsalen

Grants and funding

This work is supported by the United States Department of Agriculture (USDA) AFRI grant# 2007-35607-17887, USDA Cooperative State Research, Education and Extension Service, grants# 2009-34402-19831 and 2010-34402-20875, as well as National Natural Science Foundation of China (31028018). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.