Image microarrays derived from tissue microarrays (IMA-TMA): New resource for computer-aided diagnostic algorithm development

J Pathol Inform. 2012:3:24. doi: 10.4103/2153-3539.98168. Epub 2012 Jul 12.

Abstract

Background: Conventional tissue microarrays (TMAs) consist of cores of tissue inserted into a recipient paraffin block such that a tissue section on a single glass slide can contain numerous patient samples in a spatially structured pattern. Scanning TMAs into digital slides for subsequent analysis by computer-aided diagnostic (CAD) algorithms all offers the possibility of evaluating candidate algorithms against a near-complete repertoire of variable disease morphologies. This parallel interrogation approach simplifies the evaluation, validation, and comparison of such candidate algorithms. A recently developed digital tool, digital core (dCORE), and image microarray maker (iMAM) enables the capture of uniformly sized and resolution-matched images, with these representing key morphologic features and fields of view, aggregated into a single monolithic digital image file in an array format, which we define as an image microarray (IMA). We further define the TMA-IMA construct as IMA-based images derived from whole slide images of TMAs themselves.

Methods: Here we describe the first combined use of the previously described dCORE and iMAM tools, toward the goal of generating a higher-order image construct, with multiple TMA cores from multiple distinct conventional TMAs assembled as a single digital image montage. This image construct served as the basis of the carrying out of a massively parallel image analysis exercise, based on the use of the previously described spatially invariant vector quantization (SIVQ) algorithm.

Results: Multicase, multifield TMA-IMAs of follicular lymphoma and follicular hyperplasia were separately rendered, using the aforementioned tools. Each of these two IMAs contained a distinct spectrum of morphologic heterogeneity with respect to both tingible body macrophage (TBM) appearance and apoptotic body morphology. SIVQ-based pattern matching, with ring vectors selected to screen for either tingible body macrophages or apoptotic bodies, was subsequently carried out on the differing TMA-IMAs, with attainment of excellent discriminant classification between the two diagnostic classes.

Conclusion: The TMA-IMA construct enables and accelerates high-throughput multicase, multifield based image feature discovery and classification, thus simplifying the development, validation, and comparison of CAD algorithms in settings where the heterogeneity of diagnostic feature morphologic is a significant factor.

Keywords: CAD; IMA; SIVQ; TMA; WSI; dCORE; iMAM; image analysis.