Hemorrhagic shock is a primary injury amongst combat casualties. Aeromedical evacuation (AE) of casualties exposes patients to a hypobaric, hypoxic environment. The effect of this environment on the host response to hemorrhagic shock is unknown. In the present study, we sought to determine the effect of simulated AE on systemic inflammation and organ injury using a murine model of hemorrhagic shock. Mice underwent femoral artery cannulation and were hemorrhaged for 60 minutes. Mice were then resuscitated with a 1:1 ratio of plasma:packed red blood cells. At 1 or 24 hours after resuscitation, mice were exposed to a 5-hour simulated AE or remained at ground level (control). Serum was analyzed for cytokine concentrations and organs were assessed for neutrophil accumulation and vascular permeability. Mice in the simulated AE groups demonstrated reduced arterial oxygen saturation compared to ground controls. Serum cytokine concentrations, neutrophil recruitment, and vascular permeability in the lung, ileum, and colon in the simulated AE groups were not different from the ground controls. Our results demonstrate that mice exposed to simulated AE following hemorrhagic shock do not exhibit worsened systemic inflammation or organ injury compared to controls. The data suggest that AE has no adverse effect on isolated hemorrhagic shock.