The general reactivity of membrane lipid hydroperoxides (LOOHs) with the selenoenzyme phospholipid hydroperoxide glutathione peroxidase (PHGPX) has been investigated. When human erythrocyte ghosts (lipid content: 60 wt % phospholipid; 25 wt % cholesterol) were treated with GSH/PHGPX subsequent to rose bengal-sensitized photoperoxidation, iodometrically measured LOOHs were totally reduced to alcohols. Similar treatment with the classic glutathione peroxidase (GPX) produced no effect unless the peroxidized membranes were preincubated with phospholipase A2 (PLA2). However, under these conditions, no more than approximately 60% of the LOOH was reduced; introduction of PHGPX brought the reaction to completion. Thin layer chromatographic analyses revealed that the GPX-resistant (but PHGPX-reactive) LOOH was cholesterol hydroperoxide (ChOOH) consisting mainly of the 5 alpha (singlet oxygen-derived) product. Membrane ChOOHs were reduced by GSH/PHGPX to species that comigrated with borohydride reduction products (diols). Sensitive quantitation of PHGPX-catalyzed ChOOH reduction was accomplished by using [14C]cholesterol-labeled ghosts. Kinetic analyses indicated that the rate of ChOOH decay was approximately 1/6 that of phospholipid hydroperoxide decay. Photooxidized ghosts underwent a large burst of free radical-mediated lipid peroxidation when incubation with ascorbate/iron or xanthine/xanthine oxidase/iron. These reactions were only partially inhibited by PLA2/GSH/GPX treatment, but totally inhibited by GSH/PHGPX treatment, consistent with complete elimination of LOOHs in the latter case. These findings provide important clues as to how ChOOHs are detoxified in cells and add new insights into PHGPX's protective role.