Comparing normal modes across different models and scales: Hessian reduction versus coarse-graining

J Comput Chem. 2012 Oct 30;33(28):2250-75. doi: 10.1002/jcc.23076. Epub 2012 Sep 3.

Abstract

Dimension reduction is often necessary when attempting to reach longer length and time scales in molecular simulations. It is realized by constraining degrees of freedom or by coarse-graining the system. When evaluating the accuracy of a dimensional reduction, there is a practical challenge: the models yield vectors with different lengths, making a comparison by calculating their dot product impossible. This article investigates mapping procedures for normal mode analysis. We first review a horizontal mapping procedure for the reduced Hessian techniques, which projects out degrees of freedom. We then design a vertical mapping procedure for the "implosion" of the all-atom (AA) Hessian to a coarse-grained scale that is based upon vibrational subsystem analysis. This latter method derives both effective force constants and an effective kinetic tensor. Next, a series of metrics is presented for comparison across different scales, where special attention is given to proper mass-weighting. The dimension-dependent metrics, which require prior mapping for proper evaluation, are frequencies, overlap of normal mode vectors, probability similarity, Hessian similarity, collectivity of modes, and thermal fluctuations. The dimension-independent metrics are shape derivatives, elastic modulus, vibrational free energy differences, heat capacity, and projection on a predefined basis set. The power of these metrics to distinguish between reasonable and unreasonable models is tested on a toy alpha helix system and a globular protein; both are represented at several scales: the AA scale, a Gō-like model, a canonical elastic network model, and a network model with intentionally unphysical force constants.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural

MeSH terms

  • Kinetics
  • Models, Molecular
  • Proteins / chemistry*
  • Thermodynamics*

Substances

  • Proteins