Boron neutron capture therapy of a rat glioma

Neurosurgery. 1990 Jan;26(1):47-55. doi: 10.1097/00006123-199001000-00007.

Abstract

The purpose of the present study was to utilize a well-established rat glioma to evaluate boron neutron capture therapy for the treatment of malignant brain tumors. Boron-10 (10B) is a stable isotope which, when irradiated with thermal neutrons, produces a capture reaction yielding high linear energy transfer particles (10B + 1nth----[11B]----4He(alpha) + 7Li + 2.79 MeV). The F98 tumor is an anaplastic glioma of CD Fischer rat origin with an aggressive biological behavior similar to that of human glioblastoma multiforme. F98 cells were implanted intracerebrally into the caudate nuclei of Fischer rats. Seven to 12 days later the boron-10-enriched polyhedral borane, Na2B12H11SH, was administered intravenously at a dose of 50 mg/kg body weight at varying time intervals ranging from 3 to 23.5 hours before neutron irradiation. Pharmacokinetic studies revealed blood 10B values ranging from 0.33 to 10.5 micrograms/ml depending upon the time after administration, a T1/2 of 6.2 hours, normal brain 10B concentrations of 0.5 microgram/g, and tumor values ranging from 1.1 to 12.8 micrograms/g. No therapeutic gain was seen if the capture agent was given at 3 or 6 hours before irradiation with 4 x 10(12) n/cm2 (10 MW-min; 429 cGy). A 13.5-hour preirradiation interval resulted in a mean survival of 37.8 days (P less than 0.01), compared to 30.5 days (P less than 0.03) for irradiated controls and 22.1 days for untreated animals.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Boron / pharmacokinetics
  • Boron / therapeutic use*
  • Brain Neoplasms / metabolism
  • Brain Neoplasms / pathology
  • Brain Neoplasms / radiotherapy*
  • Energy Transfer
  • Glioma / metabolism
  • Glioma / pathology
  • Glioma / radiotherapy*
  • Isotopes
  • Neutrons*
  • Radiotherapy / methods
  • Rats
  • Rats, Inbred F344

Substances

  • Isotopes
  • Boron