The identification of sorbents that combine selectively and reversibly with CO(2) is essential for efficient and economical abatement of ever-increasing CO(2) emissions. Room temperature ionic liquids (ILs) are a promising class of potential absorbents, especially when modified to chemically combine with CO(2). In this perspective we describe the evolution of IL-based CO(2) capture chemistries over the last ten years and in particular the important role that first principles simulations have played in helping guide those developments. Current anion-functionalized ILs achieve high CO(2) capture efficiencies tailorable to a wide range of separation conditions and avoid the viscosity problems that plagued the earliest amine-functionalized, CO(2)-reactive ILs. Further progress is needed to develop ILs able to meet all the requirements of a CO(2) separation system, and simulations will play a central role in those developments.