A strategy was designed to isolate mutants of glycyl-tRNA synthetase that are altered at the amino acid binding site, including a class with altered amino acid specificity. For this purpose, the plasmid pBR322 was mutated so that the codon (AGC) of the active site Ser-68 in the beta-lactamase gene was changed to the glycine codon GGC to inactivate the encoded enzyme. Suppressors that increase the amount of beta-lactamase activity of the Gly-68 allele of beta-lactamase were isolated and some mapped to the gene encoding glycyl-tRNA synthetase (glyS). While in vitro misaminoacylation of tRNA(Gly) with serine was not detected for any of the mutants, glycyl-tRNA synthetase activity was altered. One severely affected glyS mutant (N302) was studied in more detail. For this mutant, a single Pro-61----Leu substitution in the alpha chain confers an elevation of the Km values for glycine (25-fold) and for ATP (45-fold) in the aminoacylation reaction, but only a minor perturbation of the Km for tRNA. There also was a severely reduced adenylate synthesis activity (greater than 100-fold). In addition, a nonlinear dependence between aminoacylation activity and enzyme concentration was observed which implies that the alpha chain Pro-61----Leu mutation has disrupted the functionally essential subunit interactions of the holoenzyme. The results of the preceding paper have shown that the alpha chain and parts of the beta chain are required for aminoacylation and adenylate synthesis activity. The results of this study suggest that the alpha chain specifically contributes to amino acid and to ATP binding in a way that is affected by proper subunit interactions.