Loss of TDAG51 results in mature-onset obesity, hepatic steatosis, and insulin resistance by regulating lipogenesis

Diabetes. 2013 Jan;62(1):158-69. doi: 10.2337/db12-0256. Epub 2012 Sep 6.

Abstract

Regulation of energy metabolism is critical for the prevention of obesity, diabetes, and hepatic steatosis. Here, we report an important role for the pleckstrin homology-related domain family member, T-cell death-associated gene 51 (TDAG51), in the regulation of energy metabolism. TDAG51 expression was examined during adipocyte differentiation. Adipogenic potential of preadipocytes with knockdown or absence of TDAG51 was assessed. Weight gain, insulin sensitivity, metabolic rate, and liver lipid content were also compared between TDAG51-deficient (TDAG51(-/-)) and wild-type mice. In addition to its relatively high expression in liver, TDAG51 was also present in white adipose tissue (WAT). TDAG51 was downregulated during adipogenesis, and TDAG51(-/-) preadipocytes exhibited greater lipogenic potential. TDAG51(-/-) mice fed a chow diet exhibited greater body and WAT mass, had reduced energy expenditure, displayed mature-onset insulin resistance (IR), and were predisposed to hepatic steatosis. TDAG51(-/-) mice had increased hepatic triglycerides and SREBP-1 target gene expression. Furthermore, TDAG51 expression was inversely correlated with fatty liver in multiple mouse models of hepatic steatosis. Taken together, our findings suggest that TDAG51 is involved in energy homeostasis at least in part by regulating lipogenesis in liver and WAT, and hence, may constitute a novel therapeutic target for the treatment of obesity and IR.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3T3-L1 Cells
  • Animals
  • Energy Metabolism
  • Fatty Liver / etiology*
  • Insulin Resistance*
  • Lipogenesis*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Obesity / etiology*
  • Thermogenesis
  • Transcription Factors / physiology*

Substances

  • Phlda1 protein, mouse
  • Transcription Factors