Recently we have shown that the cardioprotection afforded by cardioplegia is modulated by age and gender and is significantly decreased in the aged female. In this report we use microarray and proteomic analyses to identify transcriptomic and proteomic alterations affecting cardioprotection using cold blood cardioplegia in the mature and aged male and female heart. Mature and aged male and female New Zealand White rabbits were used for in situ blood perfused cardiopulmonary bypass. Control hearts received 30 min sham ischemia and 120 min sham reperfusion. Global ischemia (GI) hearts received 30 min of GI achieved by cross-clamping of the aorta. Cardioplegia (CP) hearts received cold blood cardioplegia prior to GI. Following 30 min of GI the hearts were reperfused for 120 min and then used for RNA and protein isolation. Microarray and proteomic analyses were performed. Functional enrichment analysis showed that mitochondrial dysfunction, oxidative phosphorylation and calcium signaling pathways were significantly enriched in all experimental groups. Glycolysis/gluconeogenesis and the pentose phosphate pathway were significantly changed in the aged male only (P < 0.05), while glyoxylate/dicarboxylate metabolism was significant in the aged female only (P < 0.05). Our data show that specific pathways associated with the mitochondrion modulate cardioprotection with CP in the aged and specifically in the aged female. The alteration of these pathways significantly contributes to decreased myocardial functional recovery and myonecrosis following ischemia and may be modulated to allow for enhanced cardioprotection in the aged and specifically in the aged female.