Genetic variants in GPR85 (SREB2: rs56080411 and rs56039557) have been associated with risk for schizophrenia. Here, we test the hypothesis that these variants impact on brain function in normal subjects, measured with functional magnetic resonance imaging (fMRI) paradigms that target regions with greatest SREB2 expression (hippocampal formation and amygdaloid complex). During a facial emotion recognition paradigm, a significant interaction of rs56080411 genotype by sex was found in the left amygdaloid complex (male risk allele carriers showed less activation than male homozygotes for the non-risk allele, while females showed the opposite pattern). During aversive encoding of an emotional memory paradigm, we found that risk allele carriers for rs56080411 had greater activation in the right inferior frontal gyrus. Trends in the same direction were present for rs56039557 in the right occipital cortex and right fusiform gyrus. During a working memory paradigm, a significant sex-by-genotype interaction was found with male risk allele carriers of rs56080411 having inefficient activation within the left dorsolateral prefrontal cortex (DLPFC), compared with same sex non-risk carriers, while females revealed an opposite pattern, despite similar levels of performance. These data suggest that risk-associated variants in SREB2 are associated with phenotypes similar to those found in patients with schizophrenia in the DLPFC and the amygdala of males, while the pattern is opposite in females. The findings in females and during the emotional memory paradigm are consistent with modulation by SREB2 of brain circuitries implicated in mood regulation and may be relevant to neuropsychiatric conditions other than schizophrenia.