To date, approximately one half of acute myeloid leukaemia (AML) patients do not have a suitable specific molecular marker for monitoring minimal residual disease (MRD). The Wilm's tumour gene (WT1) has been suggested as a possible molecular marker of MRD in AML. The expression of WT1 in peripheral blood (PB) was measured using quantitative real-time reverse transcription-polymerase chain reaction in peripheral leukocytes from 151 patients with AML at diagnosis. WT1 expression was significantly elevated, i.e. up to 3 orders of magnitude in the majority (80%) of AML patients at diagnosis compared to the PB of healthy donors. Sequence samples of the long-term followed-up AML patients treated with chemotherapy and/or allogeneic bone marrow transplantation were analysed for WT1 expression. The results revealed that the hematological relapses were preceded (median, 1.8 months) by an increase in WT1 gene expression. For the practical utility of this gene as a molecular marker of relapse, it was necessary to determine an upper remission limit, crossing which would signal hematological relapse. The upper remission limit was determined in our set of patients to be 0.02 WT1/ABL. The AML patients who consequently relapsed crossed this upper remission limit; however, those in permanent remission did not. Therefore, this upper remission limit could be taken as the border of molecular relapse of AML patients. Moreover, insufficient decline of WT1 expression under the upper remission limit following induction and/or consolidation therapy was associated with markedly high risk of relapse. The results show that our upper remission limit can be taken as the border of molecular relapse of AML patients and WT1 levels following initial therapy as a beneficial prognostic marker.