APOBEC3 (A3) proteins are virus-restriction factors that provide intrinsic immunity against infections by viruses like HIV-1 and mouse mammary tumor virus. A3 proteins are inducible by inflammatory stimuli, such as LPS and IFN-α, via mechanisms that are not fully defined. Using genetic and pharmacological studies on C57BL/6 mice and cells, we show that IFN-α and LPS induce A3 via different pathways, independently of each other. IFN-α positively regulates mouse APOBEC3 (mA3) mRNA expression through IFN-αR/PKC/STAT1 and negatively regulates mA3 mRNA expression via IFN-αR/MAPKs-signaling pathways. Interestingly, LPS shows some variation in its regulatory behavior. Although LPS-mediated positive regulation of mA3 mRNA occurs through TLR4/TRIF/IRF3/PKC, it negatively modulates mA3 mRNA via TLR4/MyD88/MAPK-signaling pathways. Additional studies on human peripheral blood mononuclear cells reveal that PKC differentially regulates IFN-α and LPS induction of human A3A, A3F, and A3G mRNA expression. In summary, we identified important signaling targets downstream of IFN-αR and TLR4 that mediate A3 mRNA induction by both LPS and IFN-α. Our results provide new insights into the signaling targets that could be manipulated to enhance the intracellular store of A3 and potentially enhance A3 antiviral function in the host.