This Article presents the synthesis, structure determination, and bonding analysis of Fe(8)Al(17.4)Si(7.6). Fe(8)Al(17.4)Si(7.6) crystallizes in a new monoclinic structure type based on columns of the fluorite (CaF(2)) structure type. As such, the compound can be seen as part of a structural series in which the fluorite structure-adopted by several transition metal disilicides (TMSi(2))-is fragmented by the incorporation of Al. Electronic structure analysis using density functional theory (DFT) and DFT-calibrated Hückel calculations indicates that the fluorite-type TMSi(2) phases (TM = Co, Ni) exhibit density of states (DOS) pseudogaps near their Fermi energies. An analogous pseudogap occurs for Fe(8)Al(17.4)Si(7.6), revealing that its complex structure serves to preserve this stabilizing feature of the electronic structure. Pursuing the origins of these pseudogaps leads to a simple picture: the DOS minimum in the TMSi(2) structures arises via a bonding scheme analogous to those of 18 electron transition metal complexes. Replacement of Si with Al leads to the necessity of increasing the (Si/Al):TM ratio to maintain this valence electron concentration. The excess Si/Al atoms are accommodated through the fragmentation of the fluorite type. The resulting picture highlights how the elucidating power of bonding concepts from transition metal complexes can extend into the intermetallic realm.