Single domain m-plane ZnO grown on m-plane sapphire by radio frequency magnetron sputtering

ACS Appl Mater Interfaces. 2012 Oct 24;4(10):5333-7. doi: 10.1021/am301271k. Epub 2012 Oct 1.

Abstract

High-quality m-plane orientated ZnO films have been successfully grown on m-plane sapphire by using radio frequency magnetron sputtering deposition. The introduction of a nanometer-thick, low-temperature-grown ZnO buffer layer effectively eliminates inclusions of other undesirable orientations. The structure characteristics of the ZnO epi-layers were thoroughly studied by synchrotron X-ray scattering and transmission electron microscopy (TEM). The in-plane epitaxial relationship between ZnO and sapphire follows (0002)(ZnO) [parallel] (112[overline]0)(sapphire) and (112[overline]0)(ZnO) [parallel] (0006)(sapphire) and the ZnO/sapphire interface structure can be described by the domain matching epitaxy along the [112[overline]0](ZnO) direction. The vibrational properties of the films were investigated by polarization dependent micro-Raman spectroscopy. Both XRD and micro-Raman results reveal that the obtained m-ZnO layers are under an anisotropic biaxial strain but still retains a hexagonal lattice.

Publication types

  • Research Support, Non-U.S. Gov't