Mitochondrial recombination in natural populations of the button mushroom Agaricus bisporus

Fungal Genet Biol. 2013 Jun:55:92-7. doi: 10.1016/j.fgb.2012.09.004. Epub 2012 Sep 21.

Abstract

In the majority of sexual eukaryotes, the mitochondrial genomes are inherited uniparentally and have predominantly clonal population structures. In clonally evolving genomes, alleles at different loci will be in significant linkage disequilibrium. In this study, the associations among alleles at nine mitochondrial loci were analyzed for 379 isolates in four natural populations of the button mushroom Agaricus bisporus. The results indicated that the mitochondrial genome in the Desert California population was not significantly different from random recombination. In contrast, the three other populations all showed predominantly clonal mitochondrial population structure. While no evidence of recombination was found in the Alberta, Canada A. bisporus population, signatures of recombination were evident in the Coastal Californian and the French populations. We discuss the potential mechanisms that could have contributed to the observed mitochondrial recombination and to the differences in allelic associations among the geographic populations in this economically important mushroom.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Agaricus / cytology
  • Agaricus / genetics*
  • Agaricus / isolation & purification
  • Alberta
  • Alleles
  • California
  • Environmental Microbiology*
  • France
  • Linkage Disequilibrium
  • Mitochondria / genetics*
  • Recombination, Genetic*