Efficient defect healing in catalytic carbon nanotube growth

Phys Rev Lett. 2012 Jun 15;108(24):245505. doi: 10.1103/PhysRevLett.108.245505. Epub 2012 Jun 15.

Abstract

The energetics of topological defects (TDs) in carbon nanotubes (CNTs) and their kinetic healing during the catalytic growth are explored theoretically. Our study indicates that, with the assistance of a metal catalyst, TDs formed during the addition of C atoms can be efficiently healed at the CNT-catalyst interface. Theoretically, a TD-free CNT wall with 10(8)-10(11) carbon atoms is achievable, and, as a consequence, the growth of perfect CNTs up to 0.1-100 cm long is possible since the linear density of a CNT is ∼100 carbon atoms per nanometer. In addition, the calculation shows that, among catalysts most often used, Fe has the highest efficiency for defect healing.