Kondo metal and ferrimagnetic insulator on the triangular kagome lattice

Phys Rev Lett. 2012 Jun 15;108(24):246402. doi: 10.1103/PhysRevLett.108.246402. Epub 2012 Jun 13.

Abstract

We obtain the rich phase diagrams in the Hubbard model on the triangular kagome lattice as a function of interaction, temperature, and asymmetry by combining the cellular dynamical mean-field theory with the continuous time quantum Monte Carlo method. The phase diagrams show the asymmetry separates the critical points in the Mott transition of two sublattices on the triangular kagome lattice and produces two novel phases called plaquette insulator with a clearly visible gap and a gapless Kondo metal. When the Coulomb interaction is stronger than the critical value U(c), a short range paramagnetic insulating state, which is a candidate for the short rang resonating valence-bond spin liquid, emerges before the ferrimagnetic order is formed independent of asymmetry. Furthermore, we discuss how to measure these phases in future experiments.