The phenomenon of coherent wave trapping and restoration is demonstrated experimentally in a magnonic crystal. Unlike the conventional scheme used in photonics, the trapping occurs not due to the deceleration of the incident wave when it enters the periodic structure but due to excitation of the quasinormal modes of the artificial crystal. This excitation occurs at the group velocity minima of the decelerated wave in narrow frequency regions near the edges of the band gaps of the crystal. The restoration of the traveling wave is implemented by means of phase-sensitive parametric amplification of the stored mode.