We have found that the previously uncharacterized bone morphogenetic protein-9 (BMP9) is one of the most osteogenic factors. However, it is unclear if BMP9 cross-talks with TGFβ1 during osteogenic differentiation. Using the recombinant BMP9 adenovirus, we find that low concentration of rhTGFβ1 synergistically induces alkaline phosphatase activity in BMP9-transduced C3H10T1/2 cells and produces more pronounced matrix mineralization. However, higher concentrations of TGFβ1 inhibit BMP9-induced osteogenic activity. Real-time PCR and Western blotting indicate that BMP9 in combination with low dose of TGFβ1 potentiates the expression of later osteogenic markers osteopontin, osteocalcin and collagen type 1 (COL1a2), while higher concentrations of TGFβ1 decrease the expression of osteopontin and osteocalcin but not COL1a2. Cell cycle analysis reveals that TGFβ1 inhibits C3H10T1/2 proliferation in BMP9-induced osteogenesis and restricts the cells in G(0)/G(1) phase. Our findings strongly suggest that TGFβ1 may exert a biphasic effect on BMP9-induced osteogenic differentiation of mesenchymal stem cells.