The genomic amplification of chromosome 1q long arm, the chromosomal region containing C1orf61, is a common event in human cancers. However, the expression pattern of chromosome 1 open reading frame 61 (C1orf61) in hepatocellular carcinoma (HCC) and its effects on HCC progression remain unclear. We have previously reported that C1orf61 is highly up-regulated during human embryogenesis. In this study, we report that C1orf61 expression is associated with the progression of liver disease. We found that C1orf61 is up-regulated in hepatic cirrhosis tissues and is further up-regulated in primary HCC tumors. Moreover, hepatitis B virus (HBV)-positive patients exhibited significantly higher levels of C1orf61 expression than HBV-negative patients. The evaluation of highly malignant HCC cell lines revealed high protein expression levels of C1orf61. Furthermore, the C1orf61 protein was found to be predominantly distributed within the cytoplasm. The ectopic expression of C1orf61 in the nonmalignant L02 cell line promoted cellular proliferation and colony formation in vitro, as well as cell cycle progression via the regulation of the expression of specific cell cycle-related proteins. In addition, the overexpression of C1orf61 in L02 cells facilitated cellular invasion and metastasis. The down-regulation of epithelial markers (E-cadherin and occludin) and the up-regulation of mesenchymal markers (N-cadherin, vimentin, and snail) suggested that the overexpression of C1orf61 induced the epithelial-mesenchymal transition (EMT) that is linked to metastasis. Taken together, our findings demonstrate, for the first time, the roles of C1orf61 in HCC tumorigenesis and metastasis.