Evaluation of different stimulation and measurement patterns based on internal electrode: application in cardiac impedance tomography

Comput Biol Med. 2012 Nov;42(11):1122-32. doi: 10.1016/j.compbiomed.2012.09.004. Epub 2012 Sep 25.

Abstract

The conductivity distribution around the thorax is altered during the cardiac cycle due to the blood perfusion, heart contraction and lung inflation. Previous studies showed that these bio-impedance changes are appropriate for non-invasive cardiac function imaging using Electrical Impedance Tomography (EIT) techniques. However, the spatial resolution is presently low. One of the main obstacles in cardiac imaging at the heart location is the large impedance variation of the lungs by respiration and muscles on the dorsal and posterior side of the body. In critical care units there is a potential to insert an internal electrode inside the esophagus directly behind the heart in the same plane of the external electrodes. The aim of the present study is to evaluate different current stimulation and measurement patterns with both external and internal electrodes. Analysis is performed with planar arrangement of 16 electrodes for a simulated 3D cylindrical tank and pig thorax model. In our study we evaluated current injection patterns consisting of adjacent, diagonal, trigonometric, and radial to the internal electrode. The performance of these arrangements was assessed using quantitative methods based on distinguishability, sensitivity and GREIT (Graz consensus Reconstruction algorithm for Electrical Impedance Tomography). Our evaluation shows that an internal electrode configuration based on the trigonometric injection patterns has better performance and improves pixel intensity of the small conductivity changes related to heart near 1.7 times in reconstructed images and also shows more stability with different levels of added noise. For the internal electrode, when we combined radial or adjacent injection with trigonometric injection pattern, we found an improvement in amplitude response. However, the combination of diagonal with trigonometric injection pattern deteriorated the shape deformation (correlation coefficient r=0.344) more than combination of radial and trigonometric injection (correlation coefficient r=0.836) for the perturbations in the area close to the center of the cylinder. We also find that trigonometric stimulation pattern performance is degraded in a realistic thorax model with anatomical asymmetry. For that reason we recommend using internal electrodes only for voltage measurements and as a reference electrode during trigonometric stimulation patterns in practical measurements.

MeSH terms

  • Algorithms
  • Animals
  • Electric Conductivity
  • Electric Impedance
  • Electric Stimulation
  • Electrodes
  • Electrodiagnosis / instrumentation*
  • Electrodiagnosis / methods*
  • Finite Element Analysis
  • Heart Function Tests / instrumentation*
  • Heart Function Tests / methods*
  • Image Processing, Computer-Assisted / methods
  • Models, Theoretical
  • Signal Processing, Computer-Assisted
  • Swine
  • Thorax / anatomy & histology
  • Thorax / physiology
  • Tomography / instrumentation*
  • Tomography / methods*