Bioactive, in situ forming materials have the potential to complement minimally invasive surgical procedures and enhance tissue healing. For such biomaterials to be adopted in the clinic, they must be cost-effective, easily handled by the surgeon and have a history of biocompatibility. To this end, we report a novel and facile self-assembling strategy to create membranes and encapsulating structures using collagen and hyaluronic acid (HA). Unlike membranes built by layer-by-layer deposition of oppositely charged biomolecules, the collagen-HA membranes described here form a diffusion barrier upon electrostatic interaction of the oppositely charged biomolecules, which is further driven by osmotic pressure imbalances. The resulting membranes have a nanofibrous architecture, a thicknesses of 130 μm and a tensile modulus (0.59±0.06 MPa) that can increase 7-fold using carbodiimide chemistry (4.42±1.46 MPa). Collagen-HA membranes support mesenchymal stem cell proliferation and have a slow and steady protein release profile (7% at day 28), offering opportunities for targeted tissue regeneration. We demonstrate the capacity to encapsulate cells by injecting HA into the collagen solution, and enhance allograft and implant biocompatibility through a coating technique. This study describes a novel mechanism of collagen-HA membrane formation and provides the groundwork to apply these membranes in a variety of tissue engineering applications.
Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.