Aim of the study: Hepatocellular carcinoma is one of the most malignant human cancers with high metastatic potential. The aim of this study is to investigate the anti-metastatic effect of genipin and its underlying mechanism.
Experimental approach: The anti-metastatic potential of genipin was evaluated by both cell and animal model. Wound healing and invasion chamber assays were introduced to examine the anti-migration and anti-invasion action of genipin in human hepatocellular carcinoma cell HepG2 and MHCC97L; orthotopical implantation model was used for in vivo evaluation. Gelatin Zymography, Immunoblotting, quantitative real-time polymerase chain reaction and ELISA assays were used to study the mechanisms underlying genipin's anti-metastatic effect.
Key results: Genipin suppresses the motility and invasiveness of HepG2 and MHCC97L at non-toxic doses, which may be correlated to the inhibition of genipin on MMP-2 activities in the cells. No significant reduced expression of MMP-2 was observed either at mRNA or at protein level. Furthermore, genipin could specifically up-regulate the expression of TIMP-1, the endogenous inhibitor of MMP-2 activities. Silencing of TIMP-1 by RNA interference abolishes genipin's anti-metastaic effect. Activation of p38 MAPK signaling was observed in genipin-treated cells, which is responsible for the TIMP-1 overexpression and MMP-2 inhibition. Presence of SB202190, the p38 MAPK inhibitor, attenuates the anti-metastatic potential of genipin in hepatocellular carcinoma. Orthotopical implantation model showed that genipin could suppress the intrahepatic metastatic as well as tumor expansion in liver without exhibiting potent toxicity.
Conclusion: Our findings demonstrated the potential of genipin in suppressing hepatocellular carcinoma metastasis, and p38/TIMP-1/MMP-2 pathway may be involved as the key mechanism of its anti-metastasis effect.