The reactions of silylenes with organic azides are quite diverse, depending on the substituents of the silylene center and on the nature of the azide employed. Elusive silaimine with three-coordinate silicon atom L(1)SiN(2,6-Triip(2)-C(6)H(3)) (5) {L(1) = CH[(C═CH(2))(CMe)(2,6-iPr(2)C(6)H(3)N)(2)] and Triip = 2,4,6-triisopropylphenyl} was synthesized by treatment of the silylene L(1)Si (1) with a sterically demanding 2,6-bis(2,4,6-triisopropylphenyl)phenyl azide (2,6-Triip(2)C(6)H(3)N(3)). The reaction of Lewis base-stabilized dichlorosilylene L(2)SiCl(2) (2) {L(2) = 1,3-bis(2,6-iPr(2)C(6)H(3))imidazol-2-ylidene} with Ph(3)SiN(3) afforded four-coordinate silaimine L(2)(Cl(2))SiNSiPh(3) (6). Treatment of 2,6-Triip(2)C(6)H(3)N(3) with L(3)SiCl (3) (L(3) = PhC(NtBu)(2)) yielded silaimine L(3)(Cl)SiN(2,6-Triip(2)-C(6)H(3)) (7) possessing a four-coordinate silicon atom. The reactions of L(3)SiN(SiMe(3))(2) (4) with adamantyl and trimethylsilyl azide furnished silaimine compounds with a four-coordinate silicon atom L(3)(N(Ad)SiMe(3))SiN(SiMe(3)) (8) (Ad = adamantyl) and L(3)(N(SiMe(3))(2))SiN(SiMe(3)) (9). Compound 8 was formed by migration of one of the SiMe(3) groups. Compounds 5-9 are stable under inert atmosphere and were characterized by elemental analysis, NMR spectroscopy, and single-crystal X-ray studies.