Glucosamine 6-phosphate N-acetyltransferase (GNA1; EC 2.3.1.4) is required for the de novo synthesis of N-acetyl-d-glucosamine-6-phosphate (GlcNAc-6P), which is an essential precursor in Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) biosynthesis pathway. Therefore, GNA1 is indispensable for the viability of organisms. Here, a novel cell-free expression strategy was developed to efficiently produce large amounts of human GNA1(HsGNA1) and HsGNA1-sGFP for throughput inhibitor screening. The binding site of inhibitor glucose-6-phosphate (G6P) to hGNA was identified by simulated annealing. Subtle differences to the binding site of Aspergillius GNA1(AfGNA1) can be harnessed for inhibitor design. HsGNA1 may be also useful as an antimicrobial and chemotherapeutic target against cancer. Additionally HsGNA1 inhibitors/modulators can possibly be administered with other drugs in the next generation of personalized medicine.
Copyright © 2012 Elsevier Inc. All rights reserved.