Instead of the conventionally atmospheric correction algorithms using the near-infrared and shortwave infrared wavelengths, an alternative practical atmospheric correction algorithm using the ultraviolet wavelength for turbid waters (named UV-AC) is proposed for satellite ocean color imagery in the paper. The principle of the algorithm is based on the fact that the water-leaving radiance at ultraviolet wavelengths can be neglected as compared with that at the visible light wavelengths or even near-infrared wavelengths in most cases of highly turbid waters due to the strong absorption by detritus and colored dissolved organic matter. The UV-AC algorithm uses the ultraviolet band to estimate the aerosol scattering radiance empirically, and it does not need any assumption of the water's optical properties. Validations by both of the simulated data and in situ data show that the algorithm is appropriate for the retrieval of the water-leaving radiance in turbid waters. The UV-AC algorithm can be used for all the current satellite ocean color sensors, and it is especially useful for those ocean color sensors lacking the shortwave infrared bands. Moreover, the algorithm can be used for any turbid waters with negligible water-leaving radiance at ultraviolet wavelength. Based on our work, we recommend the future satellite ocean color remote sensors setting the ultraviolet band to perform the atmospheric correction in turbid waters.