In this study, two types of novel molecularly imprinted polymers (MIPs) were prepared, for toxic and carcinogenic dyes adsorption. Substrates of the polymeric matrix of the two MIPs were β-cyclodextrin and chitosan. The conditions in the polymerization/imprinting stage and in the rebinding/adsorption step were optimized. The effect of a range of parameters (polymer, cross-linker, and initiator concentrations, reaction time and pH) on the selectivity and adsorption capacity of the dye-MIPs were investigated. Their dye rebinding properties were demonstrated by equilibrium batch experiments (fitting with Freundlich model) and their kinetic rates were exported by the pseudo-first order model. Additionally, a thermodynamic evaluation was carried out through the determination of enthalpy, entropy, and free energy. The selectivity of MIPs was elucidated by their different rebinding capabilities in a trichromatic mixture (composed of related structurally dyes). Regeneration/reuse of the dye-loaded polymers was evaluated via sequential adsorption-desorption cycles.
Copyright © 2012 Elsevier Ltd. All rights reserved.