Mate selection is critical to ensuring the survival of a species. In the fruit fly, Drosophila melanogaster, genetic and anatomical studies have focused on mate recognition and courtship initiation for decades. This model system has proven to be highly amenable for the study of neural systems controlling the decision making process. However, much less is known about how courtship quality is regulated in a temporally dynamic manner in males and how a female assesses male performance as she makes her decision of whether to accept copulation. Here, we report that the courting male dynamically adjusts the relative proportions of the song components, pulse song or sine song, by assessing female locomotion. Male flies deficient for olfaction failed to perform the locomotion-dependent song modulation, indicating that olfactory cues provide essential information regarding proximity to the target female. Olfactory mutant males also showed lower copulation success when paired with wild-type females, suggesting that the male's ability to temporally control song significantly affects female mating receptivity. These results depict the consecutive inter-sex behavioral decisions, in which a male smells the close proximity of a female as an indication of her increased receptivity and accordingly coordinates his song choice, which then enhances the probability of his successful copulation.