The evolution of drug resistance mutations in plasma samples is relatively well-characterized. However, the viral population and diversity in other body compartments such as peripheral blood mononuclear cells (PBMC) remains poorly understood. Previous studies have mostly focused on protease and reverse transcriptase drug resistance mutations (DRMs). In this study, we used 454 "deep" sequencing technology to observe and quantify longitudinally the prevalence of resistance mutations associated with the integrase inhibitor, raltegravir, in plasma versus PBMC samples from a San Francisco-based cohort. Four heavily treatment-experienced subjects were monitored in this study over a median of 1.2 years since the initiation of raltegravir-containing regimens. We observed a consistent discordance in the prevalence of DRMs, but not resistance pathway(s), in the plasma versus PBMC viral populations. In the final paired samples that were tested while the subjects were on a raltegravir-containing regimen, DRM prevalence reached 100% in plasma but remained 1% in PBMC on day 177 post-therapy in Subject 3180 (Q148H/G140S), 100% in plasma and 36% in PBMC on day 224 in Subject 3242 (N155H), 78% in plasma and 11-12% in PBMC on day 338 in Subject 3501 (Q148H/G140S), and 100% in plasma and 0% in PBMC on day 197 in Subject 3508 (Y143R). Furthermore, absolute sequence homology comparison between the two compartments revealed that 21% - 99% of PBMC sequences had no match in plasma, whereas 14% - 100% of plasma sequences had no match in PBMC. Overall, our observations suggested that plasma and PBMC hosted drastically different HIV-1 populations even after a prolonged exposure to raltegravir selection pressure.