Background: Trim28 appears up-regulated in many cancers.
Results: In early stage lung tumors high Trim28 correlates with increased overall survival and Trim28 reduces cell proliferation in model lung cancer cell lines through E2F interactions.
Conclusion: Trim28 may have a tumor suppressing role in the early stages of lung cancer.
Significance: These results suggest a complex role for Trim28 in lung cancer. Trim28 is a poorly understood transcriptional co-factor with pleiotropic biological activities. Although Trim28 mRNA is found in many studies to be up-regulated in both lung and breast cancer tissues relative to normal adjacent tissue, we found that within a panel of early-stage lung adenocarcinomas high levels of Trim28 protein correlate with better overall survival. This surprising observation suggests that Trim 28 may have anti-proliferative activity within tumors. To test this hypothesis, we used shRNAi to generate Trim28-knockdown breast and lung cancer cell lines and found that Trim28 depletion led to increased cell proliferation. Likewise, overexpression of Trim28 led to decreased cell proliferation. Confocal microscopy indicated co-localization of E2F3 and E2F4 with Trim28 within the cell nucleus, and co-immunoprecipitation assays demonstrated that Trim28 can bind both E2F3 and E2F4. Trim28 overexpression inhibited the transcriptional activity of E2F3 and E2F4, whereas Trim28 deficiency enhanced their activity. Co-immunoprecipitations further indicated that Trim28 bridges an interaction between E2Fs 3 and 4 and HDAC1. Promoter-reporter assays demonstrated that the ability of HDAC1 to repress E2F3 and E2F4-driven transcription is dependent on Trim28. Trim28 depletion increased E2F3 and E2F4 DNA binding activity, as measured by chromatin-immunoprecipitation (ChIP) assays while simultaneously reducing HDAC1 binding. Finally, ChIP-ReChIP experiments demonstrated that Trim/E2F complexes exist on several E2F-regulated promoters. Taken together, these results suggest that Trim28 has anti-proliferative activity in lung cancers via repression of members of the E2F family that are critical for cell proliferation.