Accumulating evidence indicates that interactions between cancer cells and stromal cells are important for the development/progression of many cancers. Herein, we found that the invasive growth of melanoma cells in three-dimensional-Matrigel/collagen-I matrices is dramatically increased on their co-culture with embryonic or adult skin fibroblasts. Studies with fluorescent-labeled cells revealed that the melanoma cells first activate the fibroblasts, which then take the lead in invasion. To identify the physiologically relevant invasion-related proteases involved, we performed genome-wide microarray analyses of invasive human melanomas and benign nevi; we found up-regulation of cysteine cathepsins B and L, matrix metalloproteinase (MMP)-1 and -9, and urokinase- and tissue-type plasminogen activators. The mRNA levels of cathepsins B/L and plasminogen activators, but not MMPs, correlated with metastasis. The invasiveness/growth of the melanoma cells with fibroblasts was inhibited by cell membrane-permeable inhibitors of cathepsins B/L, but not by wide-spectrum inhibitors of MMPs. The IHC analysis of primary melanomas and benign nevi revealed cathepsin B to be predominantly expressed by melanoma cells and cathepsin L to be predominantly expressed by the tumor-associated fibroblasts surrounding the invading melanoma cells. Finally, cathepsin B regulated TGF-β production/signaling, which was required for the activation of fibroblasts and their promotion of the invasive growth of melanoma cells. These data provide a basis for testing inhibitors of TGF-β signaling and cathepsins B/L in the therapy of invasive/metastatic melanomas.
Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.