The increased awareness of the importance of RNA in biology, illustrated by the recent attention given to RNA interference research and applications, has spurred structural and functional investigations of RNA. For these studies, the traditional purification method for in vitro transcribed RNA is denaturing polyacrylamide gel electrophoresis. However, gel-based procedures denature the RNA and can be very tedious and time-consuming. Thus, several alternative schemes have been developed for fast non-denaturing purification of RNA transcribed in vitro. In a recent report, a quick affinity purification procedure was developed for RNAs transcribed with a 3'-ARiBo tag and shown to provide RNA with exceptionally high purity and yield. The ARiBo tag contains the λboxB RNA and the glmS ribozyme, allowing immobilization on GSH-Sepharose resin via a λN-GST fusion protein and elution by activation of the glmS ribozyme with glucosamine-6-phosphate. This Chapter outlines the experimental details for affinity batch purification of RNAs using ARiBo tags. Although the procedure was originally developed for purification of a stable purine riboswitch mutant, it is demonstrated here for purification of the terminal loop of the let-7g precursor miRNA, an important target of the pluripotency factor Lin28.