Quantitative microbiological risk assessment was used to quantify the risk associated with the exposure to Legionella pneumophila in a whirlpool. Conceptually, air bubbles ascend to the surface, intercepting Legionella from the traversed water. At the surface the bubble bursts into dominantly noninhalable jet drops and inhalable film drops. Assuming that film drops carry half of the intercepted Legionella, a total of four (95% interval: 1-9) and 4.5×10(4) (4.4×10(4) - 4.7×10(4) ) cfu/min were estimated to be aerosolized for concentrations of 1 and 1,000 legionellas per liter, respectively. Using a dose-response model for guinea pigs to represent humans, infection risks for active whirlpool use with 100 cfu/L water for 15 minutes were 0.29 (∼0.11-0.48) for susceptible males and 0.22 (∼0.06-0.42) for susceptible females. A L. pneumophila concentration of ≥1,000 cfu/L water was estimated to nearly always cause an infection (mean: 0.95; 95% interval: 0.9-∼1). Estimated infection risks were time-dependent, ranging from 0.02 (0-0.11) for 1-minute exposures to 0.93 (0.86-0.97) for 2-hour exposures when the L. pneumophila concentration was 100 cfu/L water. Pool water in Dutch bathing establishments should contain <100 cfu Legionella/L water. This study suggests that stricter provisions might be required to assure adequate public health protection.
Keywords: Hot tub; Legionella; QMRA; infection risk; whirlpool.
© 2012 Society for Risk Analysis.