The structure of acidic fraction gum (AFG) from flaxseed hulls was elucidated by methylation analysis and 1D/2D NMR spectroscopy. This acidic fraction was separated from water-soluble flaxseed gum using anion-exchange chromatography. AFG consisted of a rhamnogalacturonan-I (RG-I) backbone that features diglycosyl repeating units, →2)-α-l-Rhap-(1→4)-α-d-GalpA-(1→. Rhamnosyl residues (38.2%) were the most abundant neutral sugar component. It was present mainly as unbranched (16.5%) and branched (19.5%) →2)-α-l-Rhap-(1→ at O-3. Most of its branches were terminated by monosaccharides, α/β-d-Galp-(1→ (19.6%), α-l-Fucp-(1→ (4.5%) or β-d-Xylp-(1→ (3.1%). However, when this branching site was occasionally appended with →4)-α-d-GalpA-(1→ or →2)-α-l-Rhap-(1→, side chains may consist of rhamnogalacturonan-I (RG-I), homorhamnan (HR) or a mixture of both. AFG was highly branched as indicated by its high degree of branching (0.55). A possible structure of AFG was proposed: (HR, RG-I, and HG refer to homorhamnan, rhamnogalacturonan-I, and homogalacturonan, respectively. The locations of HR, RG-I, and HG are interchangeable; (m+n)/(n+i)≈1.5. The substitution rate of R(1) is ∼54%. R(1) is mostly monosaccharide (α/β-d-Galp-(1→, α-l-Fucp-(1→ or β-d-Xylp-(1→). R(1) may also occasionally be a longer side chain with more than two residues beginning with →4)-α-GalpA-(1→ or →2)-α-l-Rhap-(1→, wherein the side-chain structure may be similar to part of the main chain.).
Copyright © 2012. Published by Elsevier Ltd.