Sulfadoxine-pyrimethamine (SP) has been one of the most widely used antimalarial treatments world-wide, and is also used prophylactically in vulnerable populations. In this paper, we develop a mathematical model which allows us to infer the time distribution of SP protection from drug-trial data. Fitting our model to data from a controlled field study in Mali, we find that SP provided protection from malaria for an average of 37.9 days in this pediatric population. We demonstrate that the duration of SP protection is not well described by an exponential distribution, and in fact has a much narrower dispersal about the mean; the best-fit standard deviation predicted by our model was only 17.0 days, as opposed to 41.8 days for the exponential model. We estimate the monthly entomological inoculation rate and the basic reproductive number for malaria in this population, and demonstrate that extremely high SP treatment rates would be necessary to maintain an effective reproductive number below one throughout a single rainy season. These results have implications for further efforts to model the impact of SP treatment, or for investigations of the optimal timing of prophylactic SP.