Translocation and insertion of secretory and membrane proteins at the endoplasmic reticulum are mediated by the Sec61 translocon. Evidence from in vivo as well as in vitro experiments indicates that N-terminal signal-anchor sequences initially insert N-first before they invert their orientation to translocate the C-terminus. Inversion is driven by flanking charges according to the positive-inside rule and inhibited by increased signal hydrophobicity. Here, we show that upon extending the N-terminal hydrophilic domain preceding the signal core to more than ~20 residues, the insertion behavior changes. Apparent signal inversion and the effect of hydrophobicity are largely lost, suggesting that N-first insertion is limited to N-terminal signal anchors. Extended N-domains sterically hinder N-translocation in a length-dependent manner also for reverse signal anchors with inverted flanking charges. The results indicate a mechanistic difference in the insertion process of N-terminal and internal signal sequences.
Copyright © 2012 Elsevier Ltd. All rights reserved.