Purpose: To evaluate liver function obtained by tracer-kinetic modeling of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data acquired with a routine gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced protocol.
Materials and methods: Data were acquired from 25 cases of nonchronic liver disease and 94 cases of cirrhosis. DCE-MRI was performed with a dose of 0.025 mmol/kg Gd-EOB-DTPA injected at 2 mL/sec. A 3D breath-hold sequence acquired 5 volumes of 72 slices each: precontrast, double arterial phase, portal phase, and 4-minute postcontrast. Regions of interest (ROIs) were selected semiautomatically in the aorta, portal vein, and whole liver on a middle slice. A constrained dual-inlet two-compartment uptake model was fitted to the ROI curves, producing three parameters: intracellular uptake rate (UR), extracellular volume (Ve), and arterial flow fraction (AFF).
Results: Median UR dropped from 4.46 10(-2) min(-1) in the noncirrhosis to 3.20 in Child-Pugh A (P = 0.001), and again to 1.92 in Child-Pugh B (P < 0.0001). Median Ve dropped from 6.64 mL 100 mL(-1) in the noncirrhosis to 5.80 in Child-Pugh A (P = 0.01). Other combinations of Ve and AFF changes were not significant for any group.
Conclusion: UR obtained from tracer kinetic analysis of a routine DCE-MRI has the potential to become a novel index of liver function.
Copyright © 2012 Wiley Periodicals, Inc.