The prokaryote Corynebacterium matruchotii produces calcium phosphate (bone salt) and may serve as a convenient model for examining individual factors relevant to vertebrate calcification. A factor of current clinical uncertainty is silicon. To investigate its possible role in biomineralisation advanced optical (digital deconvolution and 3D fluorescent image rendering) and electron microscopy (EDX microanalysis and elemental mapping) were applied to calcifying microbial colonies grown in graded Si concentrations (0-60mM). Cell viability was confirmed throughout by TO-PRO-3-iodide and SYTO-9 nucleic acid staining. It was observed that calcium accumulated in dense intracellular microspherical objects (types i-iii) as nanoparticles (5 nm, type i), nanospheres (30-50 nm, type ii) and filamentous clusters (0.1-0.5 μm, type iii), with a regular transitory Si content evident. With bacterial colony development (7-28 days) the P content increased from 5 to 60%, while Si was displaced from 60 to 5%, distinguishing the phenomenon from random contamination, and with a significant relationship (p<0.001) found between calcified object number and Si supplementation (optimum 0.01mM). The Si-containing, intracellular calcified objects (also positive for Mg and negative with Lysensor blue DND-167 for acidocalcisomes) were extruded naturally in bubble-like chains to complete the cycle by coating the cell surface with discrete mineral particles. These could be harvested by lysis, French press and density fractionation when Si was confirmed in a proportion. It was concluded that the unexplained orthopaedic activity of Si may derive from its special property to facilitate calcium phosphorylation in biological systems, thereby recapitulating an ancient and conserved bacterial cycle of calcification via silicification.
Copyright © 2012 Elsevier Ltd. All rights reserved.