Differential influences of ethanol on early exposure to racemic methylphenidate compared with dexmethylphenidate in humans

Drug Metab Dispos. 2013 Jan;41(1):197-205. doi: 10.1124/dmd.112.048595. Epub 2012 Oct 25.

Abstract

Enantioselective hydrolysis of oral racemic methylphenidate (dl-MPH) by carboxylesterase 1 (CES1) limits the absolute bioavailability of the pharmacologically active d-MPH isomer to approximately 30% and that of the inactive l-MPH to only 1-2%. Coadministration of dl-MPH with ethanol results in elevated d-MPH plasma concentrations accompanied by CES1-mediated enantioselective transesterification of l-MPH to l-ethylphenidate (EPH). The present study tested the hypothesis that administration of the pure isomer dexmethylphenidate (d-MPH) will overcome the influence of ethanol on d-MPH absorption by eliminating competitive CES1-mediated presystemic metabolism of l-MPH to l-EPH. Twenty-four healthy volunteers received dl-MPH (0.3 mg/kg) or d-MPH (0.15 mg/kg), with or without ethanol (0.6 g/kg). During the absorption phase of dl-MPH, concomitant ethanol significantly elevated d-MPH plasma concentrations (44-99%; P < 0.005). Furthermore, immediately following the ethanol drink the subjective effects of "high," "good," "like," "stimulated," and overall "effect" were significantly potentiated (P ≤ 0.01). Plasma l-EPH concentrations exceeded those of l-MPH. Ethanol combined with pure d-MPH did not elevate plasma d-MPH concentrations during the absorption phase, and the ethanol-induced potentiation of subjective effects was delayed relative to dl-MPH-ethanol. These findings are consistent with l-MPH competitively inhibiting presystemic CES1 metabolism of d-MPH. Ethanol increased the d-MPH area under the curve (AUC)(0-inf) by 21% following dl-MPH (P < 0.001) and 14% for d-MPH (P = 0.001). In men receiving d-MPH-ethanol, the d-MPH absorption partial AUC(0.5-2 hours) was 2.1 times greater and the time to maximum concentration (T(max)) occurred 1.1 hours earlier than in women, consistent with an increased rate of d-MPH absorption reducing hepatic extraction. More rapid absorption of d-MPH carries implications for increased abuse liability.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Area Under Curve
  • Carboxylesterase / metabolism
  • Dexmethylphenidate Hydrochloride*
  • Esterification
  • Ethanol / pharmacology*
  • Female
  • Hemodynamics / drug effects
  • Humans
  • Male
  • Methylphenidate / pharmacokinetics
  • Methylphenidate / pharmacology*
  • Stereoisomerism
  • Young Adult

Substances

  • Dexmethylphenidate Hydrochloride
  • Methylphenidate
  • Ethanol
  • Carboxylesterase